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CONTRIBUTION
We present a framework for analyzing

the topological evolution of graphs derived
from MEG data with these new approaches:

1. Inferring graph sequences using
sparse matrix separation and stabiliz-
ing heuristics.

2. Thresholding graph sequences using
the theory of random matrices.

3. Abstract, motif-based, analysis.

SPARSE SEPARATION
For a given matrix M , we decompose

M = L + S via the augmented Lagrangian
alternating direction method, where L is a
matrix of low ranka and S is a sparse matrix.

= +

Physiologically, we justify this approach by
hypothesizing that there are more MEG
channels than there are truly independent
signals of interest at a given point in time.

aHere, rank is automatically estimated by rank-
revealing QR factorization
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STEP 1: BUILDING GRAPH SEQUENCES
We divide the set of all (preprocessed and bandpass-filtered) MEG gradiometer signals into

(possibly overlapping) temporal windows and for each window we compute

1. A matrix of the phase locking index[1]:
∣∣∣ 1N ∑N−1

k=0 sign(φxi
(k)− φxj

(k))
∣∣∣a for all channel

pairs (i, j).

2. A sparse separation of this matrix into the sum of a low(er)-rank matrix and a sparse noise
matrix.

The noise matrices are discarded and the resulting sequence of low-rank matrices is then sub-
jected to heuristic edge stabilization, in which matrix entries are “smoothed” across the temporal
dimension. This might be a simple low-pass filter or an arbitrarily complex scoring function.
After smoothing, each matrix is thresholded into a sequence of graph adjacency matrices using
an approach based on random matrix theoryb

aφx(t) = arctan
x̄(t)
x(t)

is the instantaneous phase of timeseries x(t) and x̄(t) denotes the Hilbert transform of x(t)
bWe compute the set of eigenvalues for all matrices in a sequence and compensate for bias using standard spectral

unfolding procedures. We next observe the spacings of the unfolded eigenvalues. Random matrix theory demonstrates
that such spacings in a matrix dominated by noise will follow Gaussian Orthogonal Ensemble statistics; in a highly-
modular matrix, they will follow Poisson statistics. The correct threshold is the one which makes the matrix “Poisson
enough” for us (determined by Anderson-Darling goodness-of-fit test to an exponential distribution).

STEP 2: ANALYZING GRAPH SEQUENCES
Given this sequence of graphs, we can now compute sequences of per-node(first figure),

and whole-graph(second figure)a, metrics to quantify the change in graph topology over time,
under various experimental conditions. Statistical significance can be quantified by comparing
to sequences of graphs subjected to degree-preserving edge permutation(third figure). Arrows
denote task onset; task involved either reading a word or listening to a spoken word.

At a higher level of abstraction – removed completely from spatial embedding – we can
quantify more general topological properties of the graphs, such as counts of subgraph motifs
(figure below) and the number of nonisomorphic motifs of a given order.

Motif evolution during Listen task Motif evolution during Read task

Motifs

aThis is similar to the work of Nicol et. al.[2], though we compare timeseries, and build graphs, in a different
manner
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THREATS
• Network-estimation approach is crude. Existing, more elegant, approaches place con-

straints on the statistics of the data sources (e.g., GLASSO-like) and/or require convex
likelihood functions (e.g., TESLA). Our approach operates at a higher level of abstraction
and permits the use of arbitrary timeseries comparison metrics.

• Too abstract. Things which cannot be seen “in the small” are sometimes visible ab-
stractly (e.g., changes in global topology). Concerns regarding whether one abstracts
noise, rather than signal, can be addressed by searching for concordant results while
varying every stage of the pipeline (e.g., different time series metrics).

FUTURE DIRECTIONS
• Cross-validation on real and synthetic

data, looking for consistent topology
with varying pipelines.

• Optimization of edge stabilization
heuristic function.

• Parameter optimization for window
size/width and choice of graph met-
rics.

• Analysis of higher-order motifs and
tabulation of common motif transfor-
mations.


